Nanoparticle-Based Imaging and Therapy of Chronic Pain in the Dorsal Root Ganglia (DRG)

Chronic pain is a debilitating disease that affects approximately 1.5 billion people worldwide, and of those approximately 4% suffer from neuropathic pain. Neuropathic pain is often the result of nerve damage or a malfunctioning nervous system. It is described as a shooting or burning sensation that can come and then disappear, but it may also become chronic such that the pain becomes unrelenting and severe. Of equal note is the impact of chronic pain upon society as the costs related to disability allowance, treatment, lost wages and productivity impact the economy. Since current treatments for chronic pain are not entirely reliable, a better understanding of the mechanisms underlying chronic pain will provide new targets for analgesia.

The PIANO Network aims to develop tools to identify and visualise mechanisms of nociception in the dorsal root ganglia (DRG), outside the central nervous system (CNS). The DRG contain the cell bodies of specialised neurones that detect harmful stimuli in the periphery of the body and transmit noxious signalling to the spinal cord in the CNS.

We propose that local and targeted interventions at the level of the DRG will provide an opportunity to circumvent CNS-related side effects and optimise analgesic therapy. In models of neuropathic pain, we aim to identify the DRG involved in noxious signalling by visualising cells or molecules in the DRG which are directly or indirectly associated with the transmission of pain.

We will use novel methodologies based on nanoparticles targeted delivery to pain-related cells and molecules in the DRG. A good number of studies have shown a significant infiltration of macrophages into relevant DRG under neuropathic pain conditions. PIANO’s nanoparticles will be specifically designed to target the macrophages in the DRG, encapsulating both therapeutic payloads and imaging contrast reagents to monitor pain-driven activities.

Consequently, the goals of PIANO are:
  1. to devise a state-of-the art approach for the visualisation of neuropathic pain/inflammation mechanisms in the DRG, and
  2. to deliver analgesic molecules with the aid of nanoparticles.

Follow us ... .......

EU Framework Program

Funded by the EU
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 956477.